Đặt pt là (1)
Ta có :
(1) <=> \(\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)\left(x-6\right)\right]-24x^2=0\)
\(\Leftrightarrow\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2=0\)
Đặt \(x^2-12x+30=t\) (*)
Phương trình trở thành \(\left(t-x\right)\left(t+x\right)-24x^2=0\)
\(\Leftrightarrow t^2-x^2-24x^2=0\)
\(\Leftrightarrow t^2-25x^2=0\)
\(\Leftrightarrow\left(t-5x\right)\left(t+5x\right)=0\)
Thay (*) vào ta có :
\(\left(x^2-17x+30\right)\left(x^2+7x+30\right)=0\)
Để ý thấy \(x^2-7x+30\ne0\)
\(\Rightarrow x^2-17x+30=0\)
\(\Leftrightarrow x^2-15x-2x+30=0\)
\(\Leftrightarrow x\left(x-15\right)-2\left(x-15\right)=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=15\end{matrix}\right.\)
Vậy S={1 ; 15 }