a) \(\sqrt{x}+\sqrt{x+1}=\dfrac{1}{\sqrt{x}}\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+1}\right)\sqrt{x}=\sqrt{x}.\dfrac{1}{\sqrt{x}}\)
\(\Leftrightarrow x+\sqrt{\left(x+1\right)x}=1\)
\(\Leftrightarrow x+\sqrt{x^2+x}=1\)
\(\Leftrightarrow\sqrt{x^2+x}=1-x\)
ĐKXĐ: \(1-x\ge0\Rightarrow x\ge1\)
\(\Leftrightarrow x^2+x=\left(1-x\right)^2\)
\(\Leftrightarrow x^2+x=1-2x+x^2\)
\(\Leftrightarrow x^2-x^2+x+2x=1\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\) (nhận)
\(S=\dfrac{1}{3}\)