Vì là trắc nghiệm nên mình làm tắt thôi nkaaa.
Thay `x=1/4` vào từng ý:
a: `0=0 =>` Đúng.
b. `23/4 = 5` => Sai.
Vì là trắc nghiệm nên mình làm tắt thôi nkaaa.
Thay `x=1/4` vào từng ý:
a: `0=0 =>` Đúng.
b. `23/4 = 5` => Sai.
Giải phương trình sau:
a)\(\sqrt{\left(x-3\right)^2}=3-x\) b)\(\sqrt{4x^2-20x+25}+2x=5\)
c)\(\sqrt{1-12x+36x^2}=5\) d)\(\sqrt{x+2\sqrt{x-1}}=2\)
e)\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\) f)\(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\)
Mọi người giúp em với!!!!
Câu 1 . Cho \(a,b\ge3.\) Chứng minh rằng
\(A=21\left(a+\dfrac{1}{b}\right)+3\left(b+\dfrac{1}{a}\right)\ge80\)
Câu 2. Giải phương trình :
\(x^2+6x-1=2\sqrt{5x^3-3x^2+3x-2}\)
Câu 3. Tìm GTNN của
\(Q=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Câu 4 . Giải phương trình
\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)
giải phương trình
a)\(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{\sqrt{x}-6}{\sqrt{x}-7}\)
b)\(2+\sqrt[3]{x+5}=0\)
c)0,5\(\sqrt{\dfrac{2}{x}}-\sqrt{\dfrac{8}{25x}}+\sqrt{\dfrac{1}{4x}}=\dfrac{1}{5}\)
Giải phương trình:
a) \(2\sqrt{x}\) + 1 = \(\sqrt{2}\) = 5
b) \(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)= \(\dfrac{1}{2}\)
c) \(\dfrac{1}{\sqrt{x-3}}\) = \(\dfrac{2}{\sqrt{x-5}}\)
Giải phương trình:
a) \(\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}=4\)
b) \(\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}=8\)
Giải phương trình:
\(\sqrt{x-\dfrac{1}{2}+\sqrt{x-\dfrac{1}{2}+\sqrt{x+\sqrt{x-\dfrac{1}{4}}}}}=2\) với \(x\ge\dfrac{1}{4}\)
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
cho P = \(\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+1\right)^2+3}-\dfrac{4}{2-\sqrt{x}}+\dfrac{8\sqrt{x}+32}{8-x\sqrt{x}}\right]:\left(1-\dfrac{2}{2+\sqrt{x}}\right)\)
a, rút gọn
b, tính P tại x = \(9-4\sqrt{5}\)
c, tìm giá trị chính phương của x để P nguyên
Bài 1:Rút gọn biểu thức
A=\(\dfrac{\sqrt{x}-2}{x-4}\)
B=\(\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}\)
C\(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)
D=\(\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}\)
E=\(\dfrac{x^2-2}{x-\sqrt{2}}\)
F=\(\dfrac{\sqrt{x}-3}{x-9}\)
G=\(\dfrac{x+\sqrt{x}\sqrt{y}}{x-y}\)
Bài 2:
A=\(\dfrac{2}{x^2-y^2}\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}\)
Bài 3:Giải phương trình
a,\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)