Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quỳnh

Câu 1 . Cho \(a,b\ge3.\) Chứng minh rằng

\(A=21\left(a+\dfrac{1}{b}\right)+3\left(b+\dfrac{1}{a}\right)\ge80\)

Câu 2. Giải phương trình :

\(x^2+6x-1=2\sqrt{5x^3-3x^2+3x-2}\)

Câu 3. Tìm GTNN của

\(Q=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

Câu 4 . Giải phương trình

\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)

Akai Haruma
17 tháng 1 2019 lúc 17:07

Câu 1:

\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)

\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)

Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)

\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)

Và do $a,b\geq 3$ nên:

\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)

\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)

Cộng tất cả những BĐT trên ta có:

\(A\geq 2+14+62+2=80\) (đpcm)

Dấu "=" xảy ra khi $a=b=3$

Akai Haruma
17 tháng 1 2019 lúc 17:31

Câu 2:

Bình phương 2 vế ta thu được:

\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)

\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)

\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)

\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)

Do đó pt đã cho vô nghiệm.


Các câu hỏi tương tự
Trà My Nguyễn Thị
Xem chi tiết
Vũ Sơn Tùng
Xem chi tiết
michelle holder
Xem chi tiết
~^.^~
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Ngọc Hà
Xem chi tiết
Tam Nguyen
Xem chi tiết
Hiếu Cao Huy
Xem chi tiết
Thanh Vân
Xem chi tiết