Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Cơ

Giải phương trình :

\(4^{\log_3x}+4^{\log_3x}=2x\)

Mai Linh
29 tháng 3 2016 lúc 13:31

Điều kiện x>0. Đặt \(u=\log_3x\) thì \(x=3^u\). Khi đó phương trình trở thành 

\(4^u+2^u=2.3^u\Leftrightarrow4^u-3^u=3^u-2^u\)

Giả sử phương trình ẩn u này có nghiệm \(\alpha\), tức là

\(4^{\alpha}-3^{\alpha}=3^{\alpha}-2^{\alpha}\)

Xét hàm số \(f\left(t\right)=\left(t+1\right)^{\alpha},t>0\)

Ta có :

\(f'\left(t\right)=\alpha\left[\left(t+1\right)^{\alpha-1}-1^{\alpha-1}\right]\)

Khi đó f(3)=f(2), f(t) khả vi liên tục trên (2,3). Theo định lia Lagrange, tồn tại \(c\in\left[2;3\right]\) sao cho \(f'\left(c\right)=0\)

\(\Leftrightarrow\alpha\left[\left(c+1\right)^{\alpha-1}-c^{\alpha-1}\right]=0\Leftrightarrow\begin{cases}\alpha=0\\\alpha=1\end{cases}\)

Thử lại thấy \(u=\alpha=0\) và \(u=\alpha=1\) đều thỏa mãn.

Vậy x=1, x=3


Các câu hỏi tương tự
Mai Nguyên Khang
Xem chi tiết
Nguyễn Quốc Cường
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Nguyễn  Hai My
Xem chi tiết
Linh Dieu
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Bùi Bích Phương
Xem chi tiết
Phan Thị Minh Trí
Xem chi tiết
Vũ Bá Minh
Xem chi tiết