Giải hệ phương trình :
\(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2-8y+4=8x\end{matrix}\right.\)
Giải giúp em các hpt này vs ạ
1.\(\left\{{}\begin{matrix}-2x+5=5\\6x-8y=9\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}5x+6y=-8\\7x-7y=3\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x-2y=-4\\2x+5y=3\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}x^2y^2+4=2y^2\\\left(xy+2\right)\left(y-x\right)=x^3y^3\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{2y^2-y+1}=2y^2-x+3\end{matrix}\right.\)
Giải hpt:
\(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{y^2-y+4}=2y^2-x+3\end{matrix}\right.\)
giải hpt
a, \(\left\{{}\begin{matrix}x+2y=4\\x^2+4y=8\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=6\\x^2y+xy^2=20\end{matrix}\right.\)
Giải hệ phương trình
a. \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{3x+5}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5y+9}{y+4}=9\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\left(x-y\right)^2-3x-3y=4\\2x+y=3\end{matrix}\right.\)
1. giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
2. cho hpt \(\left\{{}\begin{matrix}2x+3y=3a\\ax-y=2\end{matrix}\right.\) (a là tham số) tìm nghiệm duy nhất của hpt thỏa mãn \(2x+y^2=1\)
3. cho hpt \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) tìm nghiệm duy nhất của hpt thỏa mãn x<0; y<0
4. cho hpt \(\left\{{}\begin{matrix}y-16x=m\\m^2-y=-4\end{matrix}\right.\) tìm m để hpt có nghiệm nguyên
1, \(\left\{{}\begin{matrix}x^3+2y^2-4y+29=0\\x^2+x^2y^2-18y=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+2y^2-4y+10=0\\x^2+x^2y^2-16y+12=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x,y>0\\x+y=7\\\dfrac{9}{x}+\dfrac{16}{y}=7\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}x,y>0\\x+y=4\\\dfrac{4}{x}+\dfrac{9}{y}\le4\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}x^3+y^2=\dfrac{211}{27}\\x^2+y^2+xy-3x-4y+4=0\end{matrix}\right.\)
6, \(\left\{{}\begin{matrix}x^4+81y^2=697\\x^2+9y^2+3xy-9x-36y+36=0\end{matrix}\right.\)
Giải hệ phương trình sau :
1/ \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
2/ \(\left\{{}\begin{matrix}y^4-2xy^2+7y^2=-x^2+7x+8\\\sqrt{3y^2+13}-\sqrt{15-2x}=\sqrt{x+1}\end{matrix}\right.\)
giúp mình với ạ .. mình cảm ơn nhiều <3