Giải hpt
\(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2-8y+4=8x\end{matrix}\right.\)
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
Giải hệ phương trình sau :
1/ \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
2/ \(\left\{{}\begin{matrix}y^4-2xy^2+7y^2=-x^2+7x+8\\\sqrt{3y^2+13}-\sqrt{15-2x}=\sqrt{x+1}\end{matrix}\right.\)
giúp mình với ạ .. mình cảm ơn nhiều <3
Giải hệ phương trình
a. \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{3x+5}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5y+9}{y+4}=9\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\left(x-y\right)^2-3x-3y=4\\2x+y=3\end{matrix}\right.\)
Giải giúp em các hpt này vs ạ
1.\(\left\{{}\begin{matrix}-2x+5=5\\6x-8y=9\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}5x+6y=-8\\7x-7y=3\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x-2y=-4\\2x+5y=3\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\).
Giải các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}4x+y=-5\\3x-2y=-12\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}x+3y=4y-x+5\\2x-y=3x-2\left(y+1\right)\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)-11\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}2\left(x+3\right)=3\left(y+1\right)+1\\3\left(x-y+1\right)=2\left(x-2\right)+3\end{matrix}\right.\).
giải hệ phương trình sau\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x+2y=1\\4x-\left(\sqrt{2}+1\right)y=3\end{matrix}\right.\)