\(\left\{{}\begin{matrix}x^2y+xy^2=0\left(1\right)\\2x^2+3xy+2y^2=1\left(2\right)\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow xy\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\x=-y\end{matrix}\right.\)
Với \(x=0\) thế vào pt(2) ta được\(2.0^2+3.0.y+2y^2=1\Rightarrow2y^2=1\Rightarrow y^2=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{\sqrt{2}}\)
Với \(y=0\) thế vào pt(2) ta được
\(2x^2+3.x.0+2.0^2=1\Rightarrow2x^2=1\Rightarrow x^2=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{\sqrt{2}}\)
Với \(x=-y\) thế vào pt(2) ta được
\(2\left(-y\right)^2+3\left(-y\right).y+2y^2=1\Rightarrow2y^2-3y^2+2y^2=1\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=1\\y=1\Rightarrow x=-1\end{matrix}\right.\)
vậy ...