Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Linh

Giai He phuong trinh:

\(\left\{{}\begin{matrix}\dfrac{5\left(x-1\right)}{x+2y}+\dfrac{3\left(y+1\right)}{x-2y}=8\\\dfrac{20\left(x-1\right)}{x+2y}-\dfrac{7\left(y+1\right)}{x-2y}=-6\end{matrix}\right.\)

Nguyễn Việt Lâm, Hạnh Hạnh, ...

Nguyễn Việt Lâm
20 tháng 1 2019 lúc 14:06

Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2y}=a\\\dfrac{y+1}{x-2y}=b\end{matrix}\right.\) hệ trở thành:

\(\left\{{}\begin{matrix}5a+3b=8\\20a-7b=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2}{5}\\b=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{x+2y}=\dfrac{2}{5}\\\dfrac{y+1}{x-2y}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5\left(x-1\right)=2\left(x+2y\right)\\y+1=2\left(x-2y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=5\\2x-5y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{23}{11}\\y=\dfrac{7}{11}\end{matrix}\right.\)


Các câu hỏi tương tự
Đinh Doãn Nam
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Oriana.su
Xem chi tiết
Qúy Công Tử
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Lâm Tố Như
Xem chi tiết
The Silent Man
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Vũ Anh Quân
Xem chi tiết