Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lunox Butterfly Seraphim

Giải hệ :\(\left\{{}\begin{matrix}\frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}=\frac{2}{\sqrt{1+2xy}}\\\sqrt{x\left(1-2x\right)}+\sqrt{y\left(1-2y\right)}=\frac{2}{9}\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 12:06

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le\frac{1}{2}\\0\le y\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow xy\le\frac{1}{4}\)

Từ pt đầu: \(\Leftrightarrow\frac{4}{1+2xy}=\left(\frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}\right)^2\le2\left(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\right)\)

\(\Leftrightarrow\frac{2}{1+2xy}\le\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\)

\(\Leftrightarrow\frac{1}{1+2x^2}+\frac{1}{1+2y^2}-\frac{2}{1+2xy}\ge0\)

\(\Leftrightarrow\frac{2\left(2xy-1\right)\left(x-y\right)^2}{\left(1+2x^2\right)\left(1+2y^2\right)\left(1+2xy\right)}\ge0\) (2)

Do \(xy\le\frac{1}{4}< \frac{1}{2}\Rightarrow2xy-1< 0\)

\(\Rightarrow\left(2\right)\) xảy ra khi và chỉ khi \(x-y=0\Leftrightarrow x=y\)

Thế vào pt dưới:

\(2\sqrt{x\left(1-2x\right)}=\frac{2}{9}\Leftrightarrow x\left(1-2x\right)=\frac{1}{81}\Leftrightarrow...\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kun ZERO
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
poppy Trang
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
fghj
Xem chi tiết