1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=4\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\frac{1}{a^2-1}+\frac{1}{\frac{16}{a^2}-1}=\frac{2}{3}\)
\(\Rightarrow a^4-8a^2+16=0\Rightarrow a^2=4\Rightarrow a=\pm2\Rightarrow x=...\)
b/ ĐKXĐ: ...
\(\Rightarrow\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{y}}-\sqrt{2-\frac{1}{x}}=0\)
\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\frac{1}{x}-\frac{1}{y}}{\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}}=0\)
\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{y-x}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\)
\(\Rightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{\sqrt{y}+\sqrt{x}}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\right)\)
\(\Rightarrow\sqrt{y}=\sqrt{x}\Rightarrow y=x\) (ngoặc phía sau luôn dương)
Thay vào pt đầu:
\(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}=2\)
Mặt khác áp dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(\Rightarrow\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}\le\sqrt{2\left(\frac{1}{x}+2-\frac{1}{x}\right)}=2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\frac{1}{\sqrt{x}}=\sqrt{2-\frac{1}{x}}\Rightarrow\frac{1}{x}=2-\frac{1}{x}\Rightarrow x=1\Rightarrow y=1\)