Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê thị hương giang

GIẢI HỆ PHƯƠNG TRÌNH ( Nâng cao )

\(1,\left\{{}\begin{matrix}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=5\\\left(xy-1\right)^2=x^2-y^2+2\end{matrix}\right.\)

\(2,\left\{{}\begin{matrix}\left(2-\frac{1}{2x+y}\right)\sqrt{y}=2\\\left(2+\frac{1}{2x+y}\right)\sqrt{x}=2\end{matrix}\right.\)

tthnew
15 tháng 9 2019 lúc 20:05

1/ĐK: x, y khác 0.

\(HPT\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=5\left(1\right)\\x^2y^2-2xy=x^2-y^2+1\left(2\right)\end{matrix}\right.\)

(2) \(\Leftrightarrow x^2y^2-x^2+y^2-1=2xy\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-1\right)=2\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(y-\frac{1}{y}\right)=2\) (*)

Mặt khác từ (1) ta có: \(\left(x^2+2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=5\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=5\) (**)

Đặt \(x+\frac{1}{x}=a;y-\frac{1}{y}=b\) kết hợp (*) và (**) thu được:

\(\left\{{}\begin{matrix}a^2+b^2=5\\ab=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=5\\ab=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2=9\\ab=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\left(3\right);\left\{{}\begin{matrix}a+b=-3\\ab=2\end{matrix}\right.\left(4\right)\)

Xét (3): Theo định lý Viet đảo, a, b là hai nghiệm của pt:

\(t^2-3t+2=0\) giải ra rồi xét các trường hợp (giải quá, em ko làm)

Xét (4): Theo định lý Viet đảo, a, b là hai nghiệm của pt:

\(t^2+3t+2=0\) giải ra rồi xét các trường hợp (giải quá, em ko làm)

Is that true?

svtkvtm
20 tháng 9 2019 lúc 15:09

\(\left\{{}\begin{matrix}\left(2-\frac{1}{2x+y}\right)\sqrt{y}=2\\\left(2+\frac{1}{2x+y}\right)\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y}-\frac{\sqrt{y}}{2x+y}=2\\2\sqrt{x}+\frac{\sqrt{x}}{2x+y}=2\end{matrix}\right.\Leftrightarrow2\left(\sqrt{x}-\sqrt{y}\right)+\frac{\sqrt{x}-\sqrt{y}}{2x+y}=0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(2-\frac{1}{2x+y}\right)=0\)

\(+,\sqrt{x}=\sqrt{y}\Leftrightarrow x=y\Rightarrow\left\{{}\begin{matrix}\left(2-\frac{1}{3x}\right)\sqrt{x}=2\\\left(2+\frac{1}{3x}\right)\sqrt{x}=2\end{matrix}\right.\Rightarrow x=0\left(l\right)\)

\(+,\frac{1}{2x+y}=2\Rightarrow l\)

\(\Rightarrow hptvn\)

tthnew
15 tháng 9 2019 lúc 14:23

Kiểu gì cũng phải chừa cho em một xuất đấy nhá!:D Giờ em đang bận việc, tối về em sẽ suy nghĩ.


Các câu hỏi tương tự
Kun ZERO
Xem chi tiết
poppy Trang
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
bach nhac lam
Xem chi tiết
poppy Trang
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết