1. giải phương trình
a. \(\sqrt{x+4}=3\)
b. \(\sqrt{x-1}-\sqrt{9x-9}+2\sqrt{36x-36}=2+\sqrt{25x-25}\)
c. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
d.\(\sqrt{x^2-10x+25}=x-3\)
e. \(\sqrt{x^2-4x+4}=2\)
giải bất phương trình :
\(\sqrt{x+2}+\sqrt{4-x}>\sqrt{2x+3}\)
Giải phương trình:
\(\sqrt{x^2-2x}+\sqrt{x^2-4x}=\sqrt{3x^2+x}\)
\(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{6x-4}{\sqrt{x^2+4}}\)
Tìm tập xác định của các hàm số sau:
1) y =\(\dfrac{2x^2-2}{\left|x^{^2}-4\right|+\left|x+2\right|}\)
2) y = \(\dfrac{3x-2}{\left|x-2\right|-\left|x+1\right|}\)
3) y = \(\dfrac{\sqrt{x^{^2}+10}-\sqrt{2x+11}}{\left|3x-2\right|-4}\)
4) y = \(\dfrac{x^{^3}-3}{\sqrt{x-2}-\sqrt{7-3x}}\)
Tìm tập xác định của các hàm số sau đây :
a) y= \(\sqrt{x-2}\)
b) y= \(\sqrt{4x-3}\)
c) y= \(\frac{2x-1}{\sqrt{x+2}}\)
d) y= x + \(\frac{1}{\sqrt{3-x}}\)
e) y= x2 + 1 + \(\frac{1}{\sqrt{4-3x}}\)
f) y= \(\sqrt{x^2+2}\) + \(\sqrt{x}\)
g) y= \(\sqrt{x^2-2x+1}\) + \(\sqrt{2-3x}\)
h) y= \(\sqrt{2+x}\) + \(\sqrt{x-2}\)
i) y= \(\sqrt{2+x}\) + \(\sqrt{2-x}\)
Giải phương trình bằng phương pháp đặt ẩn phụ
\(1=\frac{x+\sqrt{x^2+2x-3}}{\sqrt{4x^2-2x+3}}\)giải phương trình sau :
\(\sqrt{x}+\sqrt[4]{x\text{(}1-x\text{)}^2}+\sqrt[4]{\text{(}1-x\text{)}^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2.\text{(}1-x\text{)}}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^3-y^3-3x^2+4x-y-2=0\\\sqrt{x^2+x+7}+\sqrt{y^2+y+4}=x+y+4\end{matrix}\right.\)