Thấy bài này hơi muộn nên h mới làm 😊☺️
Thấy bài này hơi muộn nên h mới làm 😊☺️
giải các phương trình sau :
a ) \(\sqrt{x^2-2x+2012}+\sqrt{x^2-2x+2013}=\sqrt{4010}\)
b ) \(\dfrac{4x^2}{\sqrt{x^4+x}}=-x^2+4x-3\)
c ) \(\sqrt[4]{x}+\sqrt[4]{2-x}=2\)
Giải phương trình
a, \(\sqrt[3]{x^2-1}+3=\sqrt{x^3-2}.\)
b, \(x^2-x-2\sqrt{1+16x}=2\)
c, \(\left(x-3\right)\left(x+1\right)+3\left(x-2\right).\sqrt{\frac{x+1}{x-3}=4}\)
d, \(\sqrt{\frac{x+1}{x-1}}-\sqrt{\frac{x-1}{x+1}}=\frac{3}{2}\)
e, \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}=2}\)
Giải dùm với 1 câu cũng được cảm ơn tik nhiệt tình
Giải phương trình
a, \(\sqrt[3]{x^2-1}+3=\sqrt{x^3-2}.\)
b, \(x^2-x-2\sqrt{1+16x}=2\)
c, \(\left(x-3\right)\left(x+1\right)+3\left(x-2\right).\sqrt{\frac{x+1}{x-3}=4}\)
d, \(\sqrt{\frac{x+1}{x-1}}-\sqrt{\frac{x-1}{x+1}}=\frac{3}{2}\)
e, \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}=2}\)
Giải dùm với 1 câu cũng được Toán khó
giải phương trình sau :
\(\sqrt{x}+\sqrt[4]{x\text{(}1-x\text{)}^2}+\sqrt[4]{\text{(}1-x\text{)}^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2.\text{(}1-x\text{)}}\)
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
giải phương trình
\(\sqrt{x+1}+\sqrt{4-x}+\sqrt{-x^2+3x+4}=5\)
Cho biểu thức :
\(E=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) ;
Với x \(\ge\)0 ; x \(\ne\)4 ; x\(\ne\)9
a, Rút gọn biểu thức E
b, Tìm các giá trị nguyên của x để giá trị của biểu thức E nguyên .
Tìm tập xác định của các hàm số sau đây :
a) y= \(\sqrt{x-2}\)
b) y= \(\sqrt{4x-3}\)
c) y= \(\frac{2x-1}{\sqrt{x+2}}\)
d) y= x + \(\frac{1}{\sqrt{3-x}}\)
e) y= x2 + 1 + \(\frac{1}{\sqrt{4-3x}}\)
f) y= \(\sqrt{x^2+2}\) + \(\sqrt{x}\)
g) y= \(\sqrt{x^2-2x+1}\) + \(\sqrt{2-3x}\)
h) y= \(\sqrt{2+x}\) + \(\sqrt{x-2}\)
i) y= \(\sqrt{2+x}\) + \(\sqrt{2-x}\)
giải bất phương trình :
\(\sqrt{x+2}+\sqrt{4-x}>\sqrt{2x+3}\)