d) Phương trình đã cho tương đương với :
\(2^{3x}+2^x.3^{2x}=2.3^{2x}\Leftrightarrow\left(\frac{2}{3}\right)^{2x}+\left(\frac{2}{3}\right)^x-2=0\)
Đặt \(t=\left(\frac{2}{3}\right)^x,\left(t>0\right)\) Phương trình trở thành
\(t^3+t-2=0\) hay \(\left(t-1\right)\left(t^2+t+2\right)=0\)
Do \(t^2+t+2=\left(t+\frac{1}{2}\right)^2+\frac{7}{4}>0\) nên \(t-1=0\) hay t=1
Từ đó suy ra \(\left(\frac{2}{3}\right)^x=1=\left(\frac{2}{3}\right)^0\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất \(x=0\)
c) Điều kiện \(x\ne0\). Chia cả 2 vế của phương trình cho \(6^{\frac{1}{x}}>0\), ta có :
\(6.\left(\frac{3}{2}\right)^{\frac{1}{x}}-13.1+6\left(\frac{2}{3}\right)^{\frac{1}{x}}=0\)
Đặt \(t=\left(\frac{3}{2}\right)^{\frac{1}{x}},\left(t>0\right)\)
Phương trình trở thành
\(6t-13+\frac{6}{t}=0\) hay \(6t^2-13t+6=0\)
Phương trình bậc 2 trên có 2 nghiệm dương \(t=\frac{3}{2},t=\frac{2}{3}\)
Với \(t=\frac{3}{2}\) thì \(\left(\frac{3}{2}\right)^{\frac{1}{x}}=\frac{3}{2}\Leftrightarrow\frac{1}{x}=1\Leftrightarrow x=1\)
Với \(t=\frac{2}{3}\) thì \(\left(\frac{3}{2}\right)^{\frac{1}{x}}=\frac{2}{3}\Leftrightarrow\frac{1}{x}=-1\Leftrightarrow x=-1\)
Phương trình có 2 nghiệm dương \(x=1,x=-1\)Với
b) Đặt \(t=e^{2x}\left(t>0\right)\) ta có phương trình
\(t-\frac{4}{t}=3\) hay \(t^2-3t-4=0\)
Phương trình bậc 2 ẩn t này chỉ có 1 nghiệm duwowg t=4 suy ra
\(e^{2x}=4\Leftrightarrow x=\frac{1}{2}\ln4\)
a) Phương trình đã cho tương đương với
\(2\left(2^x\right)^2-2^3.2^x=64\Leftrightarrow2\left(2^x\right)^2-4^2.2^x-32=0\)
Đặt \(t=2^x\left(t>0\right)\) thì phương trình trở thành
\(t^2-4t-32=0\)
Đây là phương trình bậc 2 với ẩn t, ta tìm được t=8 hoặc t=-4.
Tuy nhiên t>0 nên chỉ có t=8 là thỏa mãn. Thay lại để tìm x, ta có :
\(2^x=8\Leftrightarrow2^x=2^3\Leftrightarrow x=3\)
Vậy phương trình chỉ có 1 nghiệm \(x=3\)