ĐKXĐ:\(-1\le x\le1\)
Khi đó bình phương hai vế của bpt ta có:
\(2x+2\sqrt{x^2-x^2+1}\le4\Leftrightarrow x\le1\)
Kết hợp vs đkxđ ta được:\(-1\le x\le1\)
ĐKXĐ:\(-1\le x\le1\)
Khi đó bình phương hai vế của bpt ta có:
\(2x+2\sqrt{x^2-x^2+1}\le4\Leftrightarrow x\le1\)
Kết hợp vs đkxđ ta được:\(-1\le x\le1\)
giải bất phương trình \(\sqrt{1+x}+\sqrt{1-x}\le2-\dfrac{x^2}{4}\)
giải bất pt: \(x+2\sqrt{7-x}\le2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
giải bất phương trình: \(\sqrt{x+\dfrac{1}{x^2}}+\sqrt{x-\dfrac{1}{x^2}}>\dfrac{2}{x}\)
Giải bất phương trình:
\(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}>\sqrt{x^2-2}+\sqrt{3x^2-5x-1}\)
Giải bất phương trình: \(\dfrac{8-x}{\sqrt{9-x}}-\dfrac{2-x}{\sqrt{x-1}}\ge3\)
Giải bất phương trình :
\(3\left(x^2-2\right)+\frac{4\sqrt{2}}{\sqrt{x^2-x+1}}>\sqrt{x}\left(\sqrt{x-1}+3\sqrt{x^2-1}\right)\)
Giải bất phương trình :
a, \(\dfrac{x-1}{x-1-\sqrt{x^2-x}}\dfrac{>}{ }2x\)
b, \(\dfrac{1-\sqrt{1-8x^2}}{2x}< 1\)
Giải bất phương trình:
\(\dfrac{1}{x^2}+\dfrac{x^2}{1-x^2}+\dfrac{5}{2}\left(\dfrac{\sqrt{1-x^2}}{x}+\dfrac{x}{\sqrt{1-x^2}}\right)+2>0\)
giải các bất phương trình sau
a) \(\sqrt{2x+4}-\sqrt{x}< \sqrt{x+2}\)
b)\(\left(x-5\right)\sqrt{x^2-4}\le x^2-25\)