ĐKXĐ: \(-1\le x\le3\) ; \(x\ne1\)
- Với \(-1\le x< 1\) do \(\left\{{}\begin{matrix}\sqrt{-x^2+2x+3}\ge0\\x-1< 0\end{matrix}\right.\)
\(\Rightarrow VT\le0\Rightarrow BPT\) vô nghiệm
- Với \(1< x\le3\Rightarrow x-1>0\) BPT tương đương:
\(\sqrt{-x^2+2x+3}\ge x-1\)
\(\Leftrightarrow-x^2+2x+3\ge\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-4x-2\le0\) \(\Rightarrow1-\sqrt{2}\le x\le1+\sqrt{2}\)
Kết hợp điều kiện ta được \(1< x\le1+\sqrt{2}\)