\(\frac{x}{y}+\frac{3y}{x}=4\) ta có \(Q=x^2+3y^2=4xy\Leftrightarrow\frac{x}{y}+\frac{3y}{x}=4\Leftrightarrow\left\{\begin{matrix}t=\frac{x}{y}\\t^2-4t+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}t=1\left(loai\right)\\t=3\left(nhan\right)\end{matrix}\right.\)
\(P=\frac{2t+5}{t-2}=\frac{2.3+5}{3-2}=10\)
Ta có : \(x^2+3y^2=4xy=>x^2+3y^2-4xy=0=>x^2+4y^2-y^2-4xy=0\)\(=>\left(x-2y\right)^2-y^2=0=>\left(x-3y\right)\left(x-y\right)=0\)
=>x=3y hoặc x=y . Mà x>y>0=>\(x\ne y\)=> x=y(loại)
Trường hợp x=3y chọn
Thay x=3y vào biểu thức, ta có:
P=\(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)