a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
Cho x-2y=5.Khi đó giá trị của biểu thức A=\(\dfrac{3x-2y}{2x+5}+\dfrac{3y-x}{y-5}\)
Cho 3y-x=6. Tính giá trị của biểu thức: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}\)
Cho: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\). Tính giá trị của biểu thức: \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
Tính giá trị của biểu thức \(A=\dfrac{x-y}{x+y}\), biết: \(x^2-2y^2=xy\) (y\(\ne0\); \(x+y\ne0\))
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho x, y thỏa mãn: x2 + 5y2 + 4xy - 2x - 11y + 12 = 0
Tìm giá trị nhỏ nhất của biểu thức: A = 2x + 5y
Cho x,y,z thõa mãn đẳng thức \(2x^2+y^2+13z^2-6xz-4yz-6x+9=0\)
Gía trị của biểu thức : \(P=\dfrac{2xy+xz-x^2-2y^2-yz}{x^2-y^2}\).
Câu 3: Cho biểu thức:
M= \(\dfrac{x^2}{x^2+2x}+\dfrac{2}{x+2}+\dfrac{2}{x}\) (với \(x\ne0\) và \(x\ne2\))
a, Rút gọn biểu thức M
b, Tính giá trị của biểu thức M khi \(x=-\dfrac{3}{2}\)