Lời giải:
Ta có \(y=\sin x-\cos x\Rightarrow y'=\cos x+\sin x=0\Leftrightarrow \cos x=-\sin x\)
Kết hợp với \(\cos^2x+\sin^2x=1\) suy ra \((\sin x,\cos x)=\left (\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)\) hoặc \(\left (\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\)
Với \((\sin x,\cos x)=\left (\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)\) thì \(y=\sqrt{2}\)
Với \((\sin x,\cos x)=\left (\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\) thì \(y=-\sqrt{2}\)
Do đó \(y_{\max}=\sqrt{2};y_{\min}=-\sqrt{2}\)
Đáp án B
cách khác
đơn giản hóa vấn đề
\(A=sinx-cosx=sinx-sin\left(90^0-x\right)\)
\(A=2cos\left(\dfrac{\pi}{4}\right)sin\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\)
\(-\sqrt{2}\le A\le\sqrt{2}\)