Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trùm Trường

1) Cho hàm số y=f(x)= \(\frac{3x+1}{\sqrt{x^2+1}}\), giá trị lớn nhất của hàm sồ f(x) trên tập xác định của nó là:

\(A.\sqrt{10}\) \(B.2\) \(C.2\sqrt{2}\) D.Không tồn tại giá trị lớn nhất

2) Hàm số \(y=\frac{x-1}{\sqrt{x^2+2}}\) đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn [-3;0] lần lượt tại M , N . Khi đó M.N bằng:

A.2 B.0 C.6 \(D.\sqrt{2}\)

3) Gọi M,N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số \(f\left(x\right)=\left|x-3\right|\sqrt{x+1}\) trên đoạn [0;4] . Tính M+2N:

\(A.\frac{16\sqrt{3}}{9}\) \(B.3+\sqrt{5}\) \(C.\frac{16\sqrt{3}}{3}\) \(D.\sqrt{5}\)

Nguyễn Việt Lâm
3 tháng 4 2020 lúc 19:37

1/ \(f'\left(x\right)=\frac{3\sqrt{x^2+1}-\frac{x\left(3x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\frac{3\left(x^2+1\right)-3x^2-x}{\left(x^2+1\right)\sqrt{x^2+1}}=\frac{3-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)

Hàm số đồng biến trên \(\left(-\infty;3\right)\) nghịch biến trên \(\left(3;+\infty\right)\)

\(\Rightarrow f\left(x\right)\) đạt GTLN tại \(x=3\)

\(f\left(x\right)_{max}=f\left(3\right)=\frac{10}{\sqrt{10}}=\sqrt{10}\)

2/ \(y'=\frac{\sqrt{x^2+2}-\frac{\left(x-1\right)x}{\sqrt{x^2+2}}}{x^2+2}=\frac{x^2+2-x^2+x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{x+2}{\left(x^2+2\right)\sqrt{x^2+2}}\)

\(f'\left(x\right)=0\Rightarrow x=-2\in\left[-3;0\right]\)

\(y\left(-3\right)=-\frac{4\sqrt{11}}{11}\) ; \(y\left(-2\right)=-\frac{\sqrt{6}}{2}\) ; \(y\left(0\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}M=-\frac{\sqrt{2}}{2}\\N=-\frac{\sqrt{6}}{2}\end{matrix}\right.\) \(\Rightarrow MN=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}\)

Tất cả các đáp án đều sai

3/ \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\\\sqrt{x+1}>0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\) \(\forall x\Rightarrow N=0\) khi \(x=3\)

- Với \(0\le x< 3\Rightarrow f\left(x\right)=\left(3-x\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=-\sqrt{x+1}+\frac{\left(3-x\right)}{2\sqrt{x+1}}=\frac{-2\left(x+1\right)+3-x}{2\sqrt{x+1}}=\frac{-3x+1}{2\sqrt{x+1}}\)

\(f'\left(x\right)=0\Rightarrow x=\frac{1}{3}\)

- Với \(3< x\le4\Rightarrow f\left(x\right)=\left(x-3\right)\sqrt{x+1}\)

\(\Rightarrow f'\left(x\right)=\sqrt{x+1}+\frac{x-3}{2\sqrt{x+1}}=\frac{2\left(x+1\right)+x-3}{2\sqrt{x+1}}=\frac{3x-1}{2\sqrt{x+1}}>0\) \(\forall x>3\)

Ta có: \(f\left(0\right)=3\) ; \(f\left(\frac{1}{3}\right)=\frac{16\sqrt{3}}{9}\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow M=\frac{16\sqrt{3}}{9}\Rightarrow M+2N=\frac{16\sqrt{3}}{9}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Quân Trương
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Hồng Anh
Xem chi tiết
Rhider
Xem chi tiết
Nguyễn Thảo Vy
Xem chi tiết
Nguyễn Thái Châu
Xem chi tiết
Võ Thị Hoài Linh
Xem chi tiết
Nguyễn Trọng Minh Tín
Xem chi tiết
erosennin
Xem chi tiết