A = \(\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{1}{19}+\left(\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\right)\)
\(=\frac{1}{19}+9\left(\frac{1}{19.29}+\frac{1}{29.39}+...+\frac{1}{1999.2009}\right)\)
\(=\frac{1}{19}+9.\frac{1}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
\(=\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)
\(=\frac{1}{19}+\frac{1791}{38171}\)
\(=\frac{200}{2009}\)