\(M=4\frac{1}{3}-\sqrt{16}+5\sqrt{\frac{4}{9}}-\frac{25}{\left(\sqrt{6}\right)^2}\)
\(=\frac{13}{3}-4+5\cdot\frac{2}{3}-\frac{25}{6}\)
\(=\frac{1}{3}+\frac{10}{3}-\frac{25}{6}\)
\(=\frac{11}{3}-\frac{25}{6}\)
\(=-\frac{1}{2}\)
\(M=4\frac{1}{3}-\sqrt{16}+5\sqrt{\frac{4}{9}}-\frac{25}{\left(\sqrt{6}\right)^2}\)
\(=\frac{13}{3}-4+5\cdot\frac{2}{3}-\frac{25}{6}\)
\(=\frac{1}{3}+\frac{10}{3}-\frac{25}{6}\)
\(=\frac{11}{3}-\frac{25}{6}\)
\(=-\frac{1}{2}\)
TÍNH:
a)\(10.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
b)\(\left(\frac{1}{3}\right)^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
Thực hiện phép tính và cho biết giá trị của biểu thức( chính xác đến 2 chữ số thập phân) :
A=\(\frac{\sqrt{27}+2,43}{8,6.1,13}\) B=\(\left(\sqrt{5}+\frac{2}{3}\right).\left(6,4-\frac{4}{7}\right)\)
Cho biểu thức \(P=3x^2-5\sqrt{xy}+25y^2\) . Hãy thay \(x=\sqrt{\frac{2}{3}},y=\sqrt{\frac{6}{25}}\) rồi tính giá trị của biểu thức.
Cho biểu thức \(P=3x^2-5\sqrt{xy}+25y^2\). Hãy thay \(x=\sqrt{\frac{2}{3}},y=\sqrt{\frac{6}{25}}\) rồi tính giá trị của biểu thức.
tinh va cho biết giá trị của biểu thức(chính xác đến 2 chữ số thập phân)
\(A=\frac{\sqrt{27}+2,43}{8,6.1,13}\)
\(B=\left(\sqrt{5}+\frac{2}{3}\right).\left(6,4-\frac{4}{7}\right)\)
a) Chứng tỏ rằng với số tưh nhiên n > 0 ta có:
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
b) Áp dụng kết quả trên hãy tính giá trị của biểu thức:
\(S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
Cho biểu thức \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức A tại x=\(\frac{16}{9}\) và x=\(\frac{25}{9}\)
b) Tìm giá trị x để A=5
c) Tìm xϵ Z để A có giá trị là một số nguyên dương
1. Tìm x, biết:
a) 3,2.x + (-1,2).x + 2,7 = -4,9
b) -5,6.x + 2,9.x - 3,86 = -9,8
2. Tính giá trị của các biểu thức :
A = -5,13 : \(\left(5\frac{5}{28}-1\frac{8}{9}.1,25+1\frac{16}{63}\right)\)
B = \(\left(3\frac{1}{3}.1,9+19,5:4\frac{1}{3}\right).\left(\frac{62}{75}-\frac{4}{25}\right)\)
TÍNH:
a)\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
b)\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)