Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thị Thu Thảo

a) Chứng tỏ rằng với số tưh nhiên n > 0 ta có:

\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

b) Áp dụng kết quả trên hãy tính giá trị của biểu thức:

\(S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)

Trần Việt Linh
23 tháng 10 2016 lúc 22:33

a) \(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n^2+2n+1+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

=>đpcm

b) Từ công thức trên ta có:

\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

=> \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2010}-\frac{1}{2011}\right)\)

\(=2010+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\right)\)

\(2010+\left(1-\frac{1}{2011}\right)=2010+\frac{2010}{2011}=2010\frac{2010}{2011}\)


Các câu hỏi tương tự
Nguyễn Thị Thùy Linh
Xem chi tiết
Bich Phan
Xem chi tiết
Thư Đặng
Xem chi tiết
☘-P❣N❣T-❀Huyền❀-☘
Xem chi tiết
Kirigawa Kazuto
Xem chi tiết
Hoàng Thị Minh Phương
Xem chi tiết
Trương Mai Khánh Huyền
Xem chi tiết
Huỳnh Lưu ly
Xem chi tiết
☘-P❣N❣T-❀Huyền❀-☘
Xem chi tiết