Gọi \(M\left(x_0;y_0\right)\) là điểm cố định
\(\Rightarrow y_0=-x_0^2-2mx_0-6m+x_0-2\) \(\forall m\)
\(\Leftrightarrow2m\left(x_0+3\right)+x_0^2-x_0+y_0+2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\x_0^2-x_0+y_0+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-14\end{matrix}\right.\) \(\Rightarrow M\left(-3;-14\right)\)
\(\Rightarrow MN=\sqrt{\left(4+3\right)^2+\left(-7+14\right)^2}=2\sqrt{7}\)