\(\cos\alpha< 0\)
\(\sin\alpha>0\)
\(\cos2\alpha=1-2\sin^2\alpha=1-2.\left(-0,7\right)^2=0,02\)\(\cos\alpha=-\sqrt{1-\sin^2\alpha}=-\sqrt{1-\left(-0,7\right)^2}=\dfrac{-\sqrt{51}}{10}\)\(\sin2\alpha=2\sin\alpha.\cos\alpha=2.\left(-0,7\right).\dfrac{-\sqrt{51}}{10}=\dfrac{7\sqrt{51}}{50}\)\(\sin2\alpha.\cos2\alpha=\dfrac{7\sqrt{51}}{50}.0,02\approx0,019\)