cho a,b,c là các số thực . Cmr:
\(\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
cho a,b,c là các số thực dương
Cmr: \(\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Xét:
\(\dfrac{c}{a-b}.\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}=1+\dfrac{c}{a-b}.\dfrac{c\left(a-b\right)-\left(a^2-b^2\right)}{ab}=1+\dfrac{c}{a-b}.\dfrac{\left(c-a-b\right)\left(a-b\right)}{ab}=1+\dfrac{c^2-c\left(a+b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
CMTT cộng theo vế:
\(BTCCM=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=\dfrac{6\left(a^3+b^3+c^3\right)}{3abc}\)
Mà Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\) ( tự cm,ez)
Vậy \(BTCCM=3+6=9\left(đpcm\right)\)
Cho \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right);abc\ne0;a\ne b\)
CMR:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Cho a,b,c > 0. CMR P = \(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{c^2}{a\left(a+2b\right)}\) ≥ 1
Cho a,b,c là các số thực dương. CMR
\(\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}+\frac{2\left(c+a-b\right)^2}{2b^2+\left(c+a\right)^2}+\frac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\) ≥ 1
CMR nếu \(\left(a^2-bc\right).\left(b-abc\right)=\left(b^2-ac\right).\left(a-abc\right)\) và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Phan tich da thuc sau thanh nhan tu:
a) \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2\)
b)\(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2c^2b^2\)
1,cho các sô thực a,b,c thỏa mãn abc(a+b+c)=1. Tính giá trị của biểu thức Q=\(\frac{c^2\left(a+b\right)^2\left(1+a^2b^2\right)}{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}\)