Chắc là bạn nhầm đề, với đề này thì ko giải được
Nếu sửa đề thành \(\frac{x^3}{\sqrt{5-x^2}}+8x^2=40\) thì có thể giải được:
\(\Leftrightarrow\frac{x^3}{\sqrt{5-x^2}}+8\left(x^2-5\right)=0\)
Đặt \(\sqrt{5-x^2}=a>0\Rightarrow x^2-5=-a^2\)
Phương trình trở thành:
\(\frac{x^3}{a}-8a^2=0\)
\(\Leftrightarrow x^3-8a^3=0\Leftrightarrow x^3=\left(2a\right)^3\)
\(\Leftrightarrow x=2a\Leftrightarrow2\sqrt{5-x^2}=x\) (\(x\ge0\))
\(\Leftrightarrow4\left(5-x^2\right)=x^2\)
\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\left(l\right)\end{matrix}\right.\)