Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pham quang minh

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)với a,b,c>0 và ab+bc+ca=3 

Cô mình nói quy đồng và đưa về cái khác rồi cm nó luôn đúng.

Akai Haruma
31 tháng 1 2017 lúc 21:43

Lời giải:

Không mất tính tổng quát, giả sử \(c=\min (a,b,c)\). Khi đó từ \(ab+bc+ac=3\Rightarrow ab\geq 1\)

Ta có bổ đề sau: Với \(a,b>0,ab\geq 1\) thì \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

Cách chứng minh bổ đề rất đơn giản, chỉ cần quy đồng ta có ngay đpcm

-----------------------------------------

Quay trở lại bài toán. Áp dụng bổ đề trên:

\(\Rightarrow \text{VT}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}\)

Ta sẽ CM \(\frac{2}{ab+1}+\frac{1}{c^2+1}\geq \frac{3}{2}\Leftrightarrow \frac{2c^2+3+ab}{abc^2+ab+c^2+1}\geq\frac{3}{2}\)

\(\Leftrightarrow c^2+3\geq 3abc^2+ab\Leftrightarrow c^2+bc+ca\geq 3abc^2\)

\(\Leftrightarrow a+b+c\geq 3abc\)

BĐT trên hiển nhiên đúng vì theo AM-GM ta có:

\(a+b+c\geq \sqrt{3(ab+bc+ac)}=3\)\(3=ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\Rightarrow 3abc\leq 3\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Easylove
Xem chi tiết
oooloo
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
qưet
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Kiên NT
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Tùng Trần Sơn
Xem chi tiết