Lời giải:
Viết lại PT đường tròn: \((x-1)^2+(y-1)^2=25\)
Đường tròn có tâm $I(1,1)$ và bán kính $R=5$
Giả sử đường thẳng $(d): x-y+2=0$ cắt $(I)$ theo dây cung $AB$. $H$ là chân đường cao hạ từ $I$ xuống $AB$.
\(IH=d(I,AB)=d(I,(d))=\frac{|x_I-y_I+2|}{\sqrt{1^2+(-1)^2}}=\sqrt{2}\)
\(AH=\sqrt{IA^2-IH^2}=\sqrt{R^2-IH^2}=\sqrt{5^2-2}=\sqrt{23}\)
\(AB=2AH=2\sqrt{23}\)
Đáp án B.