trong mặt phẳng oxy, cho đường tròn \(\left(C_m\right):x^2+y^2-4x-6y=m-12\) và đường thẳng \(d:2x+y-2=0\). Biết rằng (Cm) cắt d theo một dây cung có độ dài bằng 2. khẳng định nào dưới đây đúng?
A. \(m\in\left(3\sqrt{2};6\right)\)
B. m < 2
C. \(m\in\left(2;3\right)\)
D. m > 8
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và hai điểm \(A\left(1;4\right);B\left(1;\dfrac{1}{2}\right)\). Viết phương trình đường thẳng d đi qua B cắt đường tròn (C) tại M, N sao cho tam giác AMN có diện tích lớn nhất
Cho đường tròn \(\left(C\right):\left(x+1\right)^2+\left(y-2\right)^2=25\) và điểm \(A\left(3;0\right)\). Viết phương trình đường thẳng \(\left(\Delta\right)\) qua \(A\) và cắt đường thẳng \(\left(C\right)\) theo dây cung \(MN\) sao cho:
a) \(MN\) lớn nhất
b) \(MN\) nhỏ nhất
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):x^2+y^2+10x=0\)
\(\left(C_2\right):x^2+y^2-4x-2y-20=0\)
có tâm lần lượt là I, J
a) Viết phương trình đường tròn (C) đi qua các giao điểm của \(\left(C_1\right),\left(C_2\right)\) và có tâm nằm trên đường thẳng \(d:x-6y+6=0\)
b) Viết phương trình tiếp tuyến chung của \(\left(C_1\right),\left(C_2\right)\). Gọi \(T_1,T_2\) lần lượt là tiếp điểm của \(\left(C_1\right),\left(C_2\right)\) với một tiếp tuyến chung, hãy viết phương trình đường thẳng \(\Delta\) qua trung điểm của \(T_1T_2\) và vuông góc với IJ
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):\left(x-2\right)^2+\left(y-2\right)^2=4\)
\(\left(C_2\right):\left(x-5\right)^2+\left(y-3\right)^2=16\)
a) Chứng minh rằng hai đường tròn \(\left(C_1\right),\left(C_2\right)\) cắt nhau
b) Tìm tọa độ giao điểm của hai tiếp tuyến chung của \(\left(C_1\right)\) và \(\left(C_2\right)\)
Trong mặt phẳng tọa độ Oxy, lập phương trình chính rắc của elip (E) biết (E) có tiêu điểm \(F_1\left(-2;0\right)\) và diện tích hình chữ nhật cơ sở bằng \(12\sqrt{5}\). Viết phương trình đường tròn (C) có tâm là gốc tọa độ và (C) cắt (E) tại bốn điểm tạo thành một hình vuông ?
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của nó có phương trình là : \(\left(x-\dfrac{5}{2}\right)^2+y^2=\dfrac{25}{4}\). Tìm tọa độ các đỉnh còn lại của hình chữ nhật ?