Cho tam giác ABC có 3 góc nhọn Đường tròn đường kính BC cắt AB,ac lần lượt tại E và F. BF cắt EC tại H. Tia AH cắt BC tại N a, Chứng minh tam giác tam giác BHE nối tiếp, tứ giác BCFE nối tiếp b, chứng minh FB là tia phân giác của góc EFN Mọi người giúp mình với, mình cần rồi ạ
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròm (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và SC lần lượt tại M và N. Chứng minh rằng: a) tam giác AMN là tam giác cân b) các tam giác EAI và DAI là những tam giác cân c) Tứ giác AMIN là hình thoi
Cho tam giác ABC nội tiếp (O) đường kính BC có AB > AC , hai tiếp tuyến tại A và B cắt nhau tại M .
1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn và xác định tâm I của đường tròn này.
2) Chứng minh : .
3) Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
cho tam giác ABC nội tiếp đường tròn (O) , BD và CE lần lượt là các tia phân giác xủa góc ABC , ACB ( D , E thuộc (O) ) cắt nhau tại I . DE cắt AB , AC tại M, N . Chứng minh Tam giác AMN cân và tam giác AID cân
( vẽ hình giúp em với ạ )
Cho tam giác ABC có 3 góc nhọn (AB<BC,AC) nội tiếp (O). Kẻ các đường cao BD,CE cắt nhau tại H (D thuộc AC, E thuộc AB)
a, Chứng minh BCDE là tứ giác nội tiếp
b, Chứng minh DA.DC= DH.DB
c, Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M,N. Chứng minh OA vuông góc với MN.
d, Các tiếp tuyến tại M,N của (H,HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.
Cho tam giác ABC có ba góc nhọn(AB<AC; AB <BC) nội tiếp đường tròn (O; R). Hai đường cao AD và BE cắt nhau tại H, CH cắt AB tại F. Tia EF cắt tia CB tại S.
1. Chứng minh: Tứ giác BFEC nội tiếp, xác định tâm I của đường tròn này.
2. Chứng minh: FC là tia phân giác góc EFD và AF.AB =AE.AC
3. Tia EF cắt tia CB tại S. Tiếp tuyến tại B của đường tròn (I) cắt FC và AS lần lượt tại P và M. Chứng minh:ME là tiếp tuyến của (I).
4. Đường thẳng qua D song song với BE cắt BM tịa N. Đường tròn ngoại tiếp tam giác MNE cắt BE tại điểm thứ hai là K. Đường thẳng qua B song song với AC cắt DF tại Q. Chứng minh: OK vuông góc với PQ
giúp em với ạ :(((
cho tam giác abc (ab<ac ) nội tiếp đường tròn tâm o , đường cao ah , ah cắt đường tròn ở d , ao cắt đường tròn ở e. chứng minh góc bah = góc oac , tứ giác bced là hình gì ?
Cho tam giác nhọn ABC nội tiếp đường tròn (O) . Các đường cao BD, CE ( D thuộc AC, E thuộc AB ) cắt nhau tại H . Đường thẳng DE cắt đường thẳng BC tại G .
1) Chứng minh tứ giác BCDE là tứ giác nội tiếp được trong đường tròn .
2) Chứng minh : GB . GC = GE . GD .
3) Đường thẳng AG cắt đường tròn (O) tại điểm M . Chứng minh : góc MAB = góc MDG .
Mình cần câu 3 thôi ạ (k cần giải chi tiết, chỉ cần nêu ý)
2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).
a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.
b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .
c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.
Câu 5:(4,0 điểm) Cho tam giác ABC cân (AB = AC). Các đường cao AG, BE, CF gặp nhau tại H.
a. Chứng minh 4 điểm A,E,H,F cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b. Chứng minh GE là tiếp tuyến của đường tròn tâm I.
c. Chứng minh AH.BE = AF.BC
d. Cho bán kính của đường tròn tâm I là r và góc BAC = α . Hãy tính độ dài đường cao BE của tam giác ABC.