Chương III - Góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vy

2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).

a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.

b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .

c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.

Đào Thu Hiền
30 tháng 4 2021 lúc 21:47

A B C D H F E G I M O K

a) Xét Δ AFH vuông tại F => A, F, H thuộc đường tròn đường kính AH

ΔAGH vuông tại G => A, G, H thuộn đường tròn đường kính AH

=> Tứ giác AFHG nội tiếp đường tròn đường kính AH

CMTT => BGFC nội tiếp đường tròn đường kính BC

b) Do I là tâm đường tròn ngoại tiếp tứ giác AFHG => I là trung điểm AH

M là tâm đường tròn ngoại tiếp tứ giác BGFC => M là trrung điểm BC

Xét ΔAHG vuông tại G, trung tuyến GI => GI = IA = IH => ΔIAG cân tại I => \(\widehat{IAG}=\widehat{IGA}\)

CMTT => \(\widehat{MCG}=\widehat{MGC}\). Mà \(\widehat{MCG}=\widehat{IAG}\) (cùng phụ \(\widehat{GBC}\))                => \(\widehat{MGC}=\widehat{IGA}\)

=> \(\widehat{IGA}+\widehat{IGH}=\widehat{MGC}+\widehat{IGH}=\widehat{IGM}=90^o\) => IG ⊥ MG

=> MG là tiếp tuyến đường tròn tâm I

c) Kẻ đường kính AK của đường tròn (O) => \(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn) => ΔACK vuông tại C => \(\widehat{KAC}=90^o-\widehat{AKC}\)

ΔABE vuông tại E => \(\widehat{EAB}=90^o-\widehat{ABE}\) hay \(\widehat{DAB}=90^o-\widehat{ABC}\) 

Xét đường tròn (O) có \(\widehat{ABC}=\widehat{AKC}\) (cùng chắn \(\stackrel\frown{AC}\))

=> \(90^o-\widehat{AKC}=90^o-\widehat{ABC}\) => \(\widehat{DAB}=\widehat{KAC}\) => \(\stackrel\frown{BD}=\stackrel\frown{KC}\) (góc nội tiếp bằng nhau chắn các cung bằng nhau)

=> BD = KC (hai cung bằng nhau căng hai dây bằng nhau)

Xét ΔAKC vuông tại C, theo định lý Pytago có: AC2 + KC2 = AK2

Xét ΔAEC vuông tại E, theo định lý Pytago có: EA2 + EC2 = AC

ΔBED vuông tại E, theo định lý Pytago có: EB2 + ED2 = BD2

Mà BD = KC (cmt) => BD2 = KC2 => EB2 + ED2 = KC

=> EA2 + EB2 + EC2 + ED2 = AC2 + KC2 = AK2 = (2R)2 = 4R2


Các câu hỏi tương tự
Nguyễn Cao Học
Xem chi tiết
Yến Phạm Hải
Xem chi tiết
Nguyễn Văn Phiến
Xem chi tiết
ekhoavvdd
Xem chi tiết
pink hà
Xem chi tiết
Nguyễn Thị Lý lớp 9a1
Xem chi tiết
Tuấn Khanh Nguyễn
Xem chi tiết
Nam Vương Thành
Xem chi tiết
Hà Hoàng
Xem chi tiết