\(1)\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x-1\right)\\ =x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x-1\right)^2\\ =6x^2+2-6\cdot\left(x^2-2x+1\right)\\ =6x^2+2-6x^2+12x-6\\ =12x-4\)
\(2)x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\\ =x\left(x^2-1\right)-\left(x^3+1\right)\\ =x^3-x-x^3-1\\=-x-1\)
\(3)\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-4\right)\left(x+4\right)\\ =x^3-3x^2+3x-1-(x^3+8)+3\cdot\left(x^2-16\right)\\ =x^3-3x^2+3x-1-x^3-8+3x^2-48\\ =3x-55\)