\(A=sin\alpha-sin\alpha\cdot cos^2\alpha\)
\(A=sin\alpha\left(1-cos^2\alpha\right)\)
\(A=sin\alpha\cdot sin^2\alpha\)
\(A=sin^3\alpha\)
\(A=sin\alpha-sin\alpha\cdot cos^2\alpha\)
\(A=sin\alpha\left(1-cos^2\alpha\right)\)
\(A=sin\alpha\cdot sin^2\alpha\)
\(A=sin^3\alpha\)
Cho biểu thức A= 1-2sinα.cosα/sin2α - cos2α với α ≠ 450
a) Chứng minh A = sinα - cosα / sinα + cosα
b) Tính giá trị của biểu thức A biết tanα = 1/3
TÍNH GIÁ TRỊ BIỂU THỨC
P= sin2 200 + sin2 400 + sin2 450 + sin2 500 + sin2 700
rút gọn biểu thức
\(3\times\left(\sin^4+\cos^4\right)-2\times\left(sin^6+\cos^6\right)\)
Cho \(0< \alpha< 90\). Chứng minh các hệ thức sau:
a) \(\frac{sin^2\alpha-cos^2\alpha+cos^4\alpha}{cos^2\alpha-sin^2\alpha+sin^4\alpha}=tan^4\alpha\)
b) \(sin^4\alpha+cos^4\alpha=1-2.sin^2.cos^2\alpha\)
1 - cos a/ sin a - sin a/ 1 + cos a = 0
cho0<x<90. CMR giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
sin6x
a) Sắp xếp theo thứ tự tăng dần: \(\sin47^o13;\cos72^o20;\sin55^o25;\cos44^o30\)
b) Tính: \(2017.\sin^223^o+\sin^237^o+\sin^253^o+2017.\sin^267^o\)
Bài 1: Cho tam giác ABC vuông tại A; AB=3cm, AC=4cm. Tính sin B, cos B, tan B, cot B.
Bài 2: Cho \(\sin\alpha=0,6\). Tính \(\cos\alpha\), \(\tan\alpha\), \(\cot\alpha\) .
Bài 3: Cho tam giác ABC nhọn; BC=a, AB=c, AC=b. Chứng minh rằng \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\).
1+3 sin²/5sin²-sin²cos²