a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)
nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)
b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)
=2017+1
=2018
a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)
nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)
b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)
=2017+1
=2018
Cho \(0< \alpha< 90\). Chứng minh các hệ thức sau:
a) \(\frac{sin^2\alpha-cos^2\alpha+cos^4\alpha}{cos^2\alpha-sin^2\alpha+sin^4\alpha}=tan^4\alpha\)
b) \(sin^4\alpha+cos^4\alpha=1-2.sin^2.cos^2\alpha\)
Cho hình chữ nhật ABCD, gọi O là giao điểm 2 đường chéo và góc AOD=\(\alpha\)<90o.
Chứng minh: SABCD=\(\dfrac{1}{2}\)AC.BD.\(\sin\alpha\)
cho0<x<90. CMR giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
sin6x
1 - cos a/ sin a - sin a/ 1 + cos a = 0
Bài 1: Cho tam giác ABC vuông tại A; AB=3cm, AC=4cm. Tính sin B, cos B, tan B, cot B.
Bài 2: Cho \(\sin\alpha=0,6\). Tính \(\cos\alpha\), \(\tan\alpha\), \(\cot\alpha\) .
Bài 3: Cho tam giác ABC nhọn; BC=a, AB=c, AC=b. Chứng minh rằng \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\).
TÍNH GIÁ TRỊ BIỂU THỨC
P= sin2 200 + sin2 400 + sin2 450 + sin2 500 + sin2 700
Đơn giản biểu thức A = sin⍺ - sin⍺. cos2⍺
Bạn nào giải thích hộ mình cos, sin, tan là gì mới?
Mình thất sự không hiểu nó là gì
Cho biểu thức A= 1-2sinα.cosα/sin2α - cos2α với α ≠ 450
a) Chứng minh A = sinα - cosα / sinα + cosα
b) Tính giá trị của biểu thức A biết tanα = 1/3