Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2+4m\left(m+1\right)=5m^2+2m+1>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{-4\left(m+1\right)}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Leftrightarrow\frac{4\left(m-1\right)^2}{m^2}+\frac{8\left(m+1\right)}{m}=13\)
\(\Leftrightarrow4m^2-8m+4+8m^2+8m=13m^2\)
\(\Leftrightarrow m^2=4\Rightarrow m=\pm2\)