Áp dụng t/c dtsbn:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{x}{x+y-2}=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\\x+y+z=\dfrac{1}{2}\left(3\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow2x=y+z+1\)
\(\Rightarrow2x=\dfrac{1}{2}-x+1\left(do.\left(3\right)\right)\)
\(\Rightarrow x=\dfrac{1}{2}\)
\(\left(2\right)\Rightarrow2y=x+z+1\)
\(\Rightarrow2y=\dfrac{1}{2}-y+1\left(do.\left(3\right)\right)\)
\(\Rightarrow y=\dfrac{1}{2}\)
\(\left(3\right)\Rightarrow z=\dfrac{1}{2}-x-y=\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{1}{2}\)
Vậy \(\left(x;y;z\right)\in\left\{\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right\}\)