\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\Leftrightarrow\left(\dfrac{x+4}{8}+1\right)+\left(\dfrac{x+3}{9}+1\right)=\left(\dfrac{x+2}{10}+1\right)+\left(\dfrac{x+1}{11}+1\right)\)
\(\Leftrightarrow\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Leftrightarrow\left(x+12\right)\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\right)=0\)
\(\Leftrightarrow x=-12\)( do \(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\ne0\))
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\dfrac{x+4}{8}+1+\dfrac{x+3}{9}+1=\dfrac{x+2}{10}+1+\dfrac{x+1}{11}+1\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}=\dfrac{x+12}{10}+\dfrac{x+12}{11}\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Rightarrow\left(x+12\right).\left(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)=0\)
Vì \(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\ne0\) nên \(x+12=0\)
\(\Rightarrow x=-12\)
\(\Rightarrow\left(\dfrac{x+4}{8}+1\right)+\left(\dfrac{x+3}{9}+1\right)=\left(\dfrac{x+2}{10}+1\right)+\left(\dfrac{x+1}{11}+1\right)\\ \Rightarrow\dfrac{x+12}{8}+\dfrac{x+12}{9}=\dfrac{x+12}{10}+\dfrac{x+12}{11}\\ \Rightarrow\left(x+12\right)\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\right)=0\\ \Rightarrow x+12=0\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\ne0\right)\\ \Rightarrow x=-12\)
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\\ < =>\dfrac{x+4}{8}+1+\dfrac{x+3}{9}+1=\dfrac{x+2}{10}+1+\dfrac{x+1}{11}\\ < =>\dfrac{x+12}{8}+\dfrac{x+12}{9}=\dfrac{x+12}{10}+\dfrac{x+12}{11}\\ < =>\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\\ < =>\left(x+12\right)\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\right)=0\\ =>x+12=0\\ < =>x=-12\)
=> x=-12