`= (sqrt a - sqrt b)^2/(sqrt a - sqrt b) - ((sqrt a - sqrt b)(sqrt a + sqrtb))/(sqrt a + sqrt b)`
`= sqrt a - sqrt b - sqrt a + sqrt b`
`= 0`
đk a> 0 ; b>0
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}\\ =2\sqrt{a}\)