Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
A.R. M.Y

Dạng 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

Bài 3: Tìm x biêt

f. 4x (x + 1) = 8 (x + 1)

h. x2 - 4x =0

l. 2x (x - 2) - (2 - x)2 = 0

k. (1 -x)2 - 1 +x =0

i. (x - 3)3 + 3 - x =0

m) x+ 6x2 = 0

n. (x +1) = (x +1)2

f) \(4x\left(x+1\right)=8\left(x+1\right)\)

\(\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

h) \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

i) \(2x\left(x-2\right)-\left(2-x\right)^2=0\)

\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=\pm2\)

k) \(\left(1-x\right)^2-1+x=0\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

l) \(\left(x-3\right)^3+3-x=0\)

\(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x-3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=1\Leftrightarrow x=4\end{matrix}\right.\)

m) \(x+6x^2=0\)

\(\Leftrightarrow x\left(1+6x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)

n) \(\left(x+1\right)=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bùi Mạnh Khôi
19 tháng 8 2018 lúc 15:38

f ) \(4x\left(x+1\right)=8\left(x+1\right)\)

\(\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy ...

h ) \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ...

I ) \(2x\left(x-2\right)-\left(2-x\right)^2=0\)

\(\Leftrightarrow-2x\left(2-x\right)-\left(2-x\right)^2=0\)

\(\Leftrightarrow\left(-2x-2+x\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left(-2-x\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2-x=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

Vậy ...

K ) \(\left(1-x\right)^2-1+x=0\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow\left(1-x\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

Vậy ...

i ) \(\left(x-3\right)^3+3-x=0\)

\(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x-3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x-3=1\\x-3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)

Vậy ...

m ) \(x+6x^2=0\)

\(\Leftrightarrow x\left(1+6x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{6}\end{matrix}\right.\)

Vậy ...

n ) \(x+1=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

Vậy ...

oaoa


Các câu hỏi tương tự
Trung Art
Xem chi tiết
T.Huy
Xem chi tiết
nguyễn vương hải
Xem chi tiết
Tien Tien
Xem chi tiết
Ngân Chu
Xem chi tiết
Nhi Nguyễn
Xem chi tiết
Giang Hoàng Gia Linh
Xem chi tiết
Kin Nguyễn
Xem chi tiết
Ánh Dương
Xem chi tiết