d) Ta có: \(\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Leftrightarrow\left|x-1\right|\cdot\left|x+1\right|+\left|x+1\right|=0\)
\(\Leftrightarrow\left|x+1\right|\cdot\left(\left|x-1\right|+1\right)=0\)
mà \(\left|x-1\right|+1>0\forall x\)
nên \(\left|x+1\right|=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: x=-1
bn ơi đề là |x2-1|+|x+1|=0 hay là |x2-1|+|x+1|=0 vậy bn???
|2x-1| + |x+1| = 0\(\Leftrightarrow\left[{}\begin{matrix}\left|2x-1\right|=0.\left|x+1\right|\\\left|x+1\right|=0.\left|2x-1\right|\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|2x-1\right|=0\\\left|x+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1:2=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)
Vậy ......