\(\dfrac{a^2}{2}+b^2+2\ge b\left(a+2\right)\)
\(\Leftrightarrow\dfrac{a^2+2b^2+4}{2}\ge\dfrac{2ab+4b}{2}\)
\(\Leftrightarrow a^2+2b^2+4\ge2ab+4b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-4b+4\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-2\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a - b = 0 và b - 2 = 0 hay a = b = 2
Vậy \(\dfrac{a^2}{2}+b^2+2\ge b\left(a+2\right)\forall a,b\in Z.\)