Lời giải:
Áp dụng BĐT SVacxo ta có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\geq \frac{9}{a^2+b^2+c^2+ab+bc+ac+ab+bc+ac}=\frac{9}{(a+b+c)^2}=1(*)\)
Áp dụng BĐT Cauchy:
\(a^2+b^2\geq 2ab; b^2+c^2\geq 2bc; a^2+c^2\geq 2ac\)
\(\Rightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\) (cộng 3 BĐT trên theo vế)
\(\Rightarrow a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow \frac{2013}{ab+bc+ac}\geq \frac{2013}{3}=671(**)\)
Từ \((*); (**)\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{2015}{ab+bc+ac}\geq 1+671=672\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$