Áp dụng bđt AM-GM ta có
\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab\left(a+b\right)}{a^2+ab+b^2}\)\(=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)
Tương tự \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\)
\(\frac{c^3}{c^2+ca+a^2}\ge c-\frac{a+c}{3}\)
Cộng từng vế các bđt trên => đpcm
Dấu"=" xảy ra khi a=b=c
đang còn 2 cách có thể dùng AM-GM nhưng dài hơn, nên mình chọn cách ngắn nhất,
Thân ái!