a) \(9x^2-6x+2=\left(9x^2-6x+1\right)+1\)
\(=\left(3x-1\right)^2+1>0\)
b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)
2)
\(-9x^2+12x-15=-\left(9x^2-12x+15\right)\)
\(=-\left(9x^2-12x+4+11\right)\)
\(=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le-11< 0\)