a,\(a^2\ge0;b^2\ge0=>a^2+b^2\ge0\)
b, \(\dfrac{a^2+b^2}{2}\ge a< =>a^2+b^2\ge2a?\) ( đề sai )
c, \(m^2+n^2+2\ge2\left(m+n\right)\)
\(\Leftrightarrow m^2+n^2+2-2m-2n\ge0\)
\(\Leftrightarrow\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) ( hiển nhiên đúng )
\(=>đpcm\)
d, Câu này cho thêm đk a,b > 0
Áp dụng bất đẳng thức Cô - si cho 2 số dương a , b
\(\left(a+b\right)\ge2\sqrt{ab}\left(1\right)\)
Áp dụng bất đẳng thức Cô - si cho 2 số dương 1/a , 1/b có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{\dfrac{1}{ab}}\left(2\right)\)
Nhân theo vế của (1) ,(2) có : \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\)
\(=>đpcm\) .