\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
CM các hệ thức sau:
a) \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b) \(1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
c) \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos^2\alpha\)
d) \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
Sử dụng định nghĩa các tỉ số lượng giác của 1 góc nhọnđể chứng minh rằng:với mỗi góc nhọn α tùy ý ,ta có:
a,tan α=\(\frac{sin\alpha}{cos\alpha}\),cot α=\(\frac{cos\alpha}{sin\alpha}\),tan α.cot α=1
b,sin2α+cos2α=1
c,1+tan2α=\(\frac{1}{cos^2\alpha}\),1+cot2α=\(\frac{1}{sin^2\alpha}\)
Bài 1: Tính:
a) \(A=4\cos^2\alpha-6\sin^2\alpha\) biết \(\sin\alpha=\frac{1}{5}\)
b) \(B=\sin\alpha.\cos\alpha\) biết \(\tan\alpha+\cot\alpha=3\)
c) \(C=\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\) biết \(\sin\alpha=\frac{3}{4}\)
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
a, Cho cos α = 0,8. Hãy tính: sin α, tan α, cot α ?
b, Hãy tìm sin α, cos α, biết tan α = \(\frac{1}{3}\)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào số đo góc nhọn \(\alpha\) :
B= \(\cos^2\alpha+\cos^2\alpha.\sin^2\alpha+\sin^4\alpha\)
C= \(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha\)
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
rút gọn:
a/\(\cos^2\alpha\left(1+\cos^2\alpha\right)\) b/\(\frac{1+\sin\alpha}{1-\sin\alpha}-\frac{1-\sin\alpha}{1+\sin\alpha}\)