CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
H= \(\sin^4\alpha\left(1+2\cos^2\alpha\right)+\cos^4\alpha\left(1+2\sin^2\alpha\right)\)
K=\(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)
Rút gọn biểu thức
CM các hệ thức sau:
a) \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b) \(1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
c) \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos^2\alpha\)
d) \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
Chứng minh rằng với α là góc nhọn thì giá trị của các biểu thức sau không phụ thuộc vào độ lớn của α
A=\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
B=\(\sin^4\alpha+\cos^4\alpha-1+2\sin^2\alpha.\cos^2\alpha\)
C=\(\sin^4\alpha-\cos^4\alpha+2\cos^2\alpha-1\)
Cho \(\tan\alpha=\frac{3}{5}\), hãy tính giá trị của:
a) \(M=\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
b) \(N=\frac{\sin\alpha\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
c) \(P=\frac{\sin^3\alpha+\cos^3\alpha}{2\sin\alpha\cos^2\alpha+\cos\alpha\sin^2\alpha}\)
Rút gọn biểu thức:
\(A=\sin^210+\sin^220+\sin^230+\sin^280+\sin^270+\sin^260\)
\(B=\left(1+\tan^2\alpha\right)\left(1-\sin^2\alpha\right)+\left(1+\cot^2\alpha\right)\left(1-\cos^2\alpha\right)\)