Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
a) \(\dfrac{3a+5b}{2a-7b}=\dfrac{3c+5d}{2c-7d}\)
b) \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (b, d ≠ 0) ta suy ra được các tỉ lệ thức:
a/ \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b/ \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c/ \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
d/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
e/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
f/ \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho \(\dfrac{\text{a}}{b}=\dfrac{c}{d}.CM\)
\(\dfrac{3\text{a}+5b}{3\text{a}-5b}=\dfrac{3c+5d}{3c-5d}\)
\(\left(\dfrac{\text{a}+b}{c+d}\right)^2=\dfrac{\text{a}^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right).\) Chứng minh rằng:
\(\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)
Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) chứng minh rằng:
a) \(\dfrac{a}{a-b}\)=\(\dfrac{c}{c-d}\)
b) \(\dfrac{a}{b}\)=\(\dfrac{a+c}{b+d}\)
c)\(\dfrac{a}{3a+b}\)=\(\dfrac{c}{3c+b}\)
d) \(\dfrac{a.c}{b.c}\)=\(\dfrac{a^2+c^2}{b^2+d^2}\)
e) \(\dfrac{a.b}{c.d}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
f) \(\dfrac{a.b}{c.d}\)=\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
tính
a, \(\left(\dfrac{5}{3}-\dfrac{1}{2}\right):\left(\dfrac{3}{4}-\dfrac{5}{2}\right)\)
b,\(\left(\dfrac{1}{6}+\dfrac{1}{3}\right)^2\cdot\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)\)
c, \(\dfrac{4^{30}\cdot3^{43}}{2^{57}\cdot27^{15}}\)
tìm x,y thuộc Z biết:
a, \(\left(x+4\right)\left(y+3\right)=3\)
b,\(\left(x+2\right)\left(y-3\right)=-3\)
c,\(\dfrac{x+1}{2}=\dfrac{1}{y}\)
d, \(\dfrac{x-7}{-1}=\dfrac{13}{2-y}\)
Cho a/b=c/d. Hay chung to:
\(\dfrac{2d-3c}{d}=\dfrac{2b-3a}{b}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)